Языки программирования ПЛК и программная платформа автоматизации CoDeSys

Возьмем для примера простейшую задачу: необходимо включить пресс через 1 секунду после одновременного удержания оператором двух кнопок в нажатом состоянии. Таким образом, мы гарантируем, что обе руки оператора заняты и даем ему время на контроль готовности машины. Самое простое решение это соединить контакты обеих кнопок последовательно и поставить электронное реле с таймером. Если таймер допускает регулировку времени задержки, то подобная схема обеспечит некоторую гибкость системы, впрочем не слишком высокую.

Слева и справа в такой программе мы им вертикальные шины питания, соединенные горизонтальными цепями. Цепи могут состоять их контактов и некоторых дополнительных элементов (например, таймер) соединенных параллельно или последовательно. Справа каждая цепь заканчивается обмоткой реле. Контакты этого реле могут в свою очередь присутствовать в других цепях. Таким образом, можно составить достаточно сложную схему ачную по функциональности реальной релейной схеме.

 

Первые программирующие станции представляли собой весьма громоздкие устройства, транспортируемые силами нескольких человек. Тем не менее, ПЛК активно начали заменять еще более громоздкие и главное обладающие “жесткой” логикой шкафы релейной автоматики.

Физически ПЛК представляет собой один или несколько блоков, имеющих определенный набор выходов и входов, для подключения датчиков и исполнительных механизмов (см. рис.1).

Логика его работы описывается программно и выполняется встроенным микропроцессором. В результате, абсолютно одинаковые ПЛК могут выполнять совершенно разные функции. Для изменения алгоритма работы не требуется каких либо переделок аппаратной части.

Рис. 1. Принцип работы ПЛК

Развитие электроники привело к потрясающей миниатюризации ПЛК. Сегодня существуют миниатюрные программируемые ы, оснащенные небольшим дисплеем и встроенными возможностями программирования, подобные ы получили название программируемых реле. Типовые задачи программируемых реле — очень простые локальные системы, имеющие до десятка входов и несколько силовых релейных выходов.

Написать более сложную программу с помощью встроенного пульта непросто. Ачно мы легко можем набрать текст SMS на клавиатуре сотового телефона, но даже ввод нескольких страниц текста, не говоря уже о больших объемах, представляется проблематичным. Для этого существуют персональные компьютеры (PC), предоставляющие гораздо более комфортабельные условия работы человека.

Один современный ПЛК способен заменить десятки регуляторов, сотни таймеров и тысячи реле. Используя PC запрограммировать такую систему совсем не сложно. Применение PC в качестве программирующей станции ПЛК является сегодня инирующим решением. Это не только упрощает программирование, но и решает задачи архивирования проектов, подготовки документации, визуализации и моделирования. Компьютер дает удобный универсальный инструмент как для программирования простейших локальных задач на ПЛК, так и для ТП.

  Как сделать простой ветрогенератор из шуруповерта

Обратите внимание что, говоря о программировании ПЛК, мы все время возвращаемся к тому, как сделать этот процесс простым и удобным для человека. Казалось бы, однажды запрограммированный ПЛК будет работать годами и не очень важно будет ли его программа выглядеть красиво, главное чтобы она хорошо работала.

К сожалению, это не так. Необходимость изменения программы в ПЛК возникает регулярно иногда и непреденно. Поэтому, написана она должна быть так, чтобы любой человек, а не только ее автор мог в ней быстро разобраться и оперативно внести необходимые доработки. Говорить о том, что программы написаны для ПЛК, не вполне корректно.

Все программы написаны человеком и предназначены для чтения человеком. Любые инструменты программирования дают в конечном итоге микропроцессору инструкции в его машинных кодах. Для него нет разницы, на каком языке написана программа. 

Упомянутый выше был изобретен в в период релейной автоматизации. В Европу мода на ПЛК пришла несколько позднее, когда релейные шкафы были уже успешно заменены на шкафы с логическими микросхемами. Поэтому возникла необходимость изобретения других языков программирования понятных новому поколению инженеров.

Так в Германии появились языки простых текстовых инструкций напоминающих ассемблер (IL). Во Франции возникли графические и высокоуровневые диаграммы описания этапов и условий переходов (Графсет, современный SFC). Применялись также языки, используемые для программирования компьютеров (Pascal, Basic). В конце семидесятых годов сложилась крайне сложная ситуация.

Каждый изготовитель ПЛК (в том числе и в СССР) разрабатывал собственный язык программирования, поэтому ПЛК разных производителей были программно несовместимы, кроме того существовала проблема аппаратной несовместимости. Замена ПЛК на продукт другого изготовителя превратилась в огромную проблему. Покупатель ПЛК был вынужден использовать изделия только одной фирмы либо тратить силы на изучение разных языков и средства на приобретение соответствующих инструментов.

В итоге в 1979 году в рамках Международной Электротехнической Комиссии (МЭК) была создана специальная группа технических экспертов по проблемам ПЛК. Ей была поставлена задача выработать ные требования к аппаратным средствам, программному обеспечению, правилам монтажа, тестирования, документирования и средствам связи ПЛК.

В 1982 году был опубликован первый черновой вариант а, который получил наименование МЭК 1131. Ву сложности получившегося документа, было решено разбить его на несколько частей, вопросам программирования посвящена третья часть а “Языки программирования ПЛК”.

  Заменить окна на металлопластиковые? Тогда вам это нужно знать!

Поскольку с 1997 года МЭК перешел на 5 цифровые обозначения, в настоящее время правильное наименование международной версии части а посвященной языкам программирования ПЛК – МЭК 61131-3. Рабочей группой МЭК было принято достаточно оригинальное решение. Из всего многообразия существовавших на момент разработки а языков программирования ПЛК были выделены 5 языков, получивших наибольшее распространение.

Спецификации языков были доработаны, так что стало возможным использовать в программах написанных на любом из этих языков изованный набор элементов и типов данных. Такой подход МЭК не раз подвергался критике, но время доказало правильность этого решения.

Реализация подобного подхода позволила привлечь к программированию одного и того же ПЛК специалистов различных областей знаний (и что особенно важно – различной квалификации): специалистов по релейной автоматике (и даже электриков), программирующих в LD, специалистов в области полупроводниковой схемотехники и автоматического регулирования для которых привычен язык FBD, программистов, имеющих опыт написания программ для компьютеров на языке ассемблера (ему соответствует язык IL для ПЛК), на языках высокого уровня (язык ST), даже далекие от программирования специалисты-технологи получили свой инструмент программирования – язык SFC.

Structured Text

Представляем книгу по Structured Text (ST) МЭК 61131-3. Автор — Сергей Романов

Книга «Изучаем Structured Text МЭК 61131-3»: Ссылка на книгу

Хотя внедрение МЭК систем программирования и не позволило полностью отказаться от услуг профессиональных программистов (впрочем такая цель и не ставилась), но зато позволило снизить требования к квалификации и соответственно затраты на оплату труда программистов ПЛК. Стандартизация языков позволила (по крайней мере, частично) решить проблему зависимости пользователя ПЛК от конкретного изготовителя.

Все современные ПЛК оснащаются средствами МЭК 61131-3 программирования, что упрощает работу пользователям ов (можно использовать ПЛК различных фирм без затрат на переучивание) и одновременно снимает ряд проблем для изготовителей ПЛК (можно использовать компоненты ПЛК других изготовителей). 

Стандарт существенно расширил возможности на рынке труда специалиста, занимающегося программированием ПЛК. Подобно тому как автомеханик, имеющий ный набор инструментов, может браться за ремонт любого узла (кроме неных) машины любой фирмы, так и специалист, изучивший языки МЭК 61131-3 сможет разобраться с программой любого современного ПЛК. Это позволило уменьшить как зависимость фирмы от специалиста по программированию ПЛК, так и специалиста от фирмы.

На сегодняшний день лидирующие позиции на рынке МЭК систем программирования занимает комплекс CoDeSys немецкой компании 3S-Smart Software Solutions GmbH. Его применяют 190 компаний во всем мире, большинство из этих компаний — ведущие изготовители оборудования и/или систем промышленной автоматизации.

  Типовые схемы подключения трехфазного двигателя к однофазной сети

В России ПЛК с CoDeSys хорошо известны специалистам, диапазон продукции, выпускаемой под управлением этих ПЛК огромен CoDeSys включает 5 специализированных редакторов для каждого из ных языков программирования:

  • Список Инструкций (IL),

  • Функциональные блоковые диаграммы (FBD),

  • Релейно-контактные схемы (LD),

  • Структурированный текст (ST),

  • Последовательные функциональные схемы (SFC).

Редакторы поддержаны большим числом вспомогательных инструментов, ускоряющих ввод программ. Это ассистент ввода, автоматическое объявление переменных, интеллектуальная коррекция ввода, цветовое выделение и синтаксический контроль при вводе, масштабирование, автоматическое размещение и соединение графических элементов.

В одном проекте можно совмещать программы, написанные на нескольких языках МЭК либо использовать один из них. Никаких особых требований по выбору языка нет. Он обусловлен исключительно личными предпочтениями.

В России наиболее популярен язык ST. Это текстовый язык, представляющий собой несколько адаптированный Паскаль. Второе место по популярности занимает графический язык FBD, далее следует язык LD. Помимо средств подготовки программ, CoDeSys включает встроенный отладчик, эмулятор, инструменты визуализации и управления проектом, конфигураторы ПЛК и сети. 

Воплощением еще одной неожиданной идеи, коллективно сформированной пользователями CoDeSys, стало добровольное объединение изготовителей ПЛК, поддерживающих CoDeSys, в некоммерческую организацию CoDeSys Automation Alliance (САА). Суть идеи в том, чтобы превратить изготовителей средств промышленной автоматизации, поддерживающих CoDeSys, в партнеров (насколько это возможно на конкурентном рынке) и нейтрализовать последствия конкуренции между изготовителями для пользователей ПЛК.

Вместо намеренного создания технических препятствий, не позволяющих пользователям легко использовать продукты другой компании, члены САА целенаправленно принимают меры призванные обеспечить совместимость своих продуктов.

Пользователь может быть уверен, что его прикладная CoDeSys-программа будет работать в любом е любой компании являющейся членом САА. Пользователь может быть уверен, что используемые им инструменты (CoDeSys) проверены тысячами пользователей во всем мире. Пользователь всегда может обсудить свои затруднения и получить реальную помощь от широкого круга коллег, имевших опыт решения подобных задач.

Брокарев А.Ж., Петров И.В. Компания «ПРОЛОГ»

Читайте наш Телеграм-канал https://t.me/ieport_new

Pin It

Добавить комментарий